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Particle stresses in dilute, polydisperse, two-way coupled turbulent flows
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Direct numerical simulations are performed of turbulent planar Couette flow which are seeded with two-way
coupled particles at low volume concentration. Based on an understanding of the development of particle stress
(horizontal momentum carried vertically on average by the particle phase) in monodisperse systems at various
particle Stokes numbers, several bidisperse and continuously polydisperse systems are simulated which are
chosen to understand how flows containing blends of particle Stokes numbers can be effectively modeled in
the dilute regime. Under noninteracting conditions, the particle stresses from particles with different inertia
and different feedback stresses are shown to be linearly additive, providing a convenient method for effectively
representing dispersed phase stress in polydisperse systems. While this is true, it is demonstrated that a single
effective particle size is in general not sufficient at representing the entire mixture.
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I. INTRODUCTION

In the limit of high density ratio and low volume concentra-
tion, the Lagrangian point particle method two-way coupled
to a turbulent flow computed via direct numerical simulation
(DNS) has been used extensively to probe the phenomena of
turbulence modification by a dispersed phase [1]. Specifically,
in wall-bounded flows, these small, heavy particles are seen to
collect near the walls through the process of turbophoresis [2],
while at the same time experiencing preferential concentration
which is maximized at a Stokes number near unity [3]. Both
of these processes result in varying degrees of effectiveness
of particle-induced modulation of the carrier phase flow as a
function of particle inertia. In nearly all previous studies of
two-way coupled wall-bounded flow, however, the dispersed
phase is assumed to be monodisperse. Even in studies which
consider evaporating droplets [4], the droplet size distributions
remain relatively narrow.

This study aims to extend previous simulations of planar
Couette flow [5–7] by considering the two-way coupling in
polydisperse systems. We focus entirely on the dilute limit, in
that particle-particle interactions are not considered, and thus
any couplings between particle sizes will be indirect—i.e.,
coupling to the carrier phase flow of one particle type may
enhance or inhibit the two-way coupling of other types. While
the effects of particle collisions in polydisperse systems can be
quite important [8], effectively modeling the particle stress of
polydisperse systems is relevant in many environments where
volume concentrations remain quite low, such as windborne
spray or dust at heights O(1 m) above the surface.

Richter and Sullivan [5] showed that reductions of the
carrier phase Reynolds stress are maximized when the Stokes
number based on the centerline Kolmogorov scale StK is
order unity, and that particles with StK = O(1) could reduce
turbulent vortical motions near the wall twice as efficiently
as particles with StK = O(10). At low Reynolds numbers,
this Stokes-number-dependent reduction in the Reynolds stress
was shown to be nearly exactly offset by the dispersed phase
stress, in such a way that the total stress remains nearly constant
across various particle types. Richter and Sullivan [6] then
illustrated that StK = O(1) particles preferentially concentrate
in exactly the regions associated with the Reynolds-stress-

producing ejection motions at the wall, hence their efficient
reduction of the turbulent stress, while particles with higher
Stokes numbers of StK = O(10) and StK = O(100) are not
able to collect in these regions and thus their reduction of
the Reynolds stress (and the resulting increase of the particle
stress) remains smaller in magnitude.

After further establishing and characterizing the particle
stress which develops in monodisperse systems, the present
simulations first consider bidisperse systems, with the goal
of determining the overall degree of two-way coupling when
particles with different clustering characteristics are together
in the same flow. Once it is shown that the particle stresses
for these bidisperse systems are nearly additive, polydisperse
systems are considered which contain equal mass contributions
in the Stokes number range 1–100.

II. NUMERICAL SETUP

Details of the numerical method are contained elsewhere
[5–7], and only a brief summary will be provided herein.
DNS is performed on the carrier phase using a pseudospec-
tral discretization in the periodic, homogeneous x and y

directions and second-order finite differences in the wall-
normal z direction. Time integration is performed via a third
order Runge-Kutta scheme. The carrier phase is assumed
incompressible, and thus the equations governing mass and
momentum conservation are given by

∂uj

∂xj

= 0, (1)

and
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where ui is the carrier phase velocity, ρf is the carrier phase
density, and νf is the carrier phase kinematic viscosity. Fp,i

is the coupling force due to the dispersed phase, which is
computed at a node by summing the individual projected
particle drag forces which occur within a grid cell length in all
three directions.

Gravity is neglected, and the dispersed phase is assumed
to have a density much larger than the carrier phase density.
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FIG. 1. Simulation domain schematic. Plate velocity difference
is U0 and plate separation is H . Example mean velocity profile shown
in red.

Thus the only force considered is the drag force [9], which
is assumed to be the Stokes drag with an empirical Reynolds
number correction [10]:

vp,i = dxp,i

dt
, (3)

dvp,i

dt
=

(
1 + 0.15Re0.687

p

)

τp

(uf,i − vp,i), (4)

where uf,i is the carrier phase velocity interpolated to the
particle location using sixth order Lagrange interpolation,
τp = ρpd2

p/18ρaνa is the Stokes acceleration time scale of the
particle, and Rep = dp|uf,i − vp,i |/νf is the particle Reynolds
number. The particle diameter and density are given by dp and
ρp, respectively.

Turbulent planar Couette flow develops between two plates
moving with equal and opposite velocities, where U0 is
the velocity difference and H is the distance between the
walls—see Fig. 1. A grid of [Nx,Ny,Nz] = [128,256,128] on
a domain size of [Lx,Ly,Lz] = [2πH,2πH,H ] is used for
the carrier phase calculations. The bulk Reynolds number of
the flow, defined as Reb = U0H/νf , is set to 8000, which
leads to a friction Reynolds number of Reτ ≈ 120, where
Reτ = uτH/2νf is based on the standard friction velocity uτ .
Both the streamwise and spanwise domain distances are too
small to avoid artificial confinement of the large-scale Couette
structures which form in this flow, but for the purposes of
this study this effect does not preclude a study of the effects
of polydispersity on particle stresses. Furthermore turbulent
statistics such as the Reynolds stress are relatively insensitive
to this confinement [11]. Turbulent Couette flow is chosen
because (a) the total stress is uniform with height and (b) the
presence of the large structures provides an additional time and
length scale with which the particles can interact in addition to
the “typical” near-wall streaks and vortices found in turbulent
channel flow.

Boundary conditions for the carrier phase are no-slip at
both walls and periodic in the horizontal directions. Particles
bounce elastically from the walls at a distance of one viscous
unit (as opposed to their radius—see discussion in Richter
and Sullivan [5]). Averages are performed for nondimensional
times of at least tU0/H = 5000 after a statistically steady
state has been developed, except in noted cases where slow
turbophoretic processes prevent a statistical stationary state to
develop in a reasonable amount of time.

The particle Stokes number, StK = τp/τK is defined based
on the acceleration time scale τp and the Kolmogorov time
scale computed directly from the dissipation rate at the channel
centerline. In many other studies, the Stokes number is instead

defined based on viscous wall units rather than τK , but we
choose the current definition since StK ≈ 1 corresponds to the
peak in the reduction of the carrier phase Reynolds stress.
Regarding the time discretization, a Courant-Friedrichs-Lewy
(CFL) parameter of 0.6 ensures that the ratio of τp/�t , where
�t is the simulation time step, remains larger than 5 for all
Stokes numbers.

Three sets of simulations are performed: (1) a series of
monodisperse simulations to determine the distinct Stokes
number regimes which exist in the two-way coupled system,
(2) a set of bidisperse simulations where binary mixtures of
particles from the set StK ≈ [1,10,100] are used to understand
simple combinations of particles from each of the distinct
Stokes number regimes, and (3) a series of polydisperse
simulations where power-law-distributed blends of particles
for various ranges within 1 < StK < 100 are used to develop
a low-order method for representing the mixture. In all
simulations the mass fraction is fixed at a value of φm = 0.25.

III. RESULTS

A. Monodisperse simulations

Before discussing the effects of polydispersity, we first
summarize the behavior of two-way coupled monodisperse
simulations, focusing particularly on particle-induced modifi-
cations to momentum fluxes across the domain. Figure 2 shows
the total upwards (positive z) momentum flux τtot, broken up
into its turbulent τturb = ρf 〈u′w′〉, viscous τvis = −ρf νf

d〈u〉
dz

,
and particle-induced τpart = 〈C〉〈u′

pw′
p〉c components, where

C(z) is the mass concentration, u′
p and w′

p are the fluctuating
particle velocities, and 〈·〉c refers to a mass-weighted average
over the particle phase in a horizontal slab of height �z (see
Richter and Sullivan [5] for a more detailed description of this

τ /ρU0
2

z/
H

-0.001 -0.0005 0
0

0.2

0.4

0.6

0.8

1

τ turb

τ visc

τ part

τ tot

FIG. 2. Stress components for StK ≈ 0.1 (orange, squares),
StK ≈ 1.0 (red, triangles), StK ≈ 10 (blue, diamonds), StK ≈ 100
(green, circles), and unladen (black, no symbol) as a function of z/H .
Line types: solid corresponds to total stress τtot, dashed to turbulent
stress τturb, dotted to viscous stress τvisc, and dash-dotted to particle
stress τpart.
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FIG. 3. Solid squares (left axis): turbulent stress τturb = ρf 〈u′w′〉
evaluated at the centerline, normalized by the unladen value at the
centerline τturb,un plotted as a function of StK . Hollow triangles (right
axis): normalized particle stress τpart/ρf U 2

0 as a function of StK .

breakdown). Contained in Fig. 2 is the unladen case and laden
cases at StK ≈ [0.1,1.0,10,100].

Figure 2 shows that the total stress (solid lines) remains
nearly unchanged for all StK , except when StK ≈ 0.1. In this
case, the particles have very little inertia and nearly act as fluid
tracers. In the limit of StK → 0 while maintaining a constant
mass fraction, the particles effectively increase the density of
the carrier phase (see for example Lee and Lee [12]), and
in this case the total stress would be increased by 25%. For
StK ≈ 0.1, it is this behavior which results in a total stress
magnitude which exceeds that for all other cases. Also note
for StK ≈ 0.1 that the total stress slightly deviates from a
uniform vertical profile; this is due to the slow turbophoretic
processes at this low Stokes number and corresponding lack
of statistical stationarity.

For StK � 1, on the other hand, reductions in the turbulent
stress (dashed lines) are nearly exactly compensated by a rise
in the particle stress (dash-dotted lines), and it is these cases in
which we are primarily interested since the particles possess
appreciable inertia, as measured by StK . Figure 2 suggests that
the maximum reduction of the turbulent stress occurs when
StK = O(1), with a peak of the particle stress among StK � 1.

To confirm this behavior Fig. 3 plots two quantities: (1) the
ratio τturb/τturb,un, where τturb,un is the turbulent stress for the
unladen case and (2) the normalized particle stress τpart/ρf U 2

0 ,
both evaluated at the channel centerline and plotted against
a more comprehensive set of StK . The ratio τturb/τturb,un in
Fig. 3 (solid squares) exhibits two minima: one occurring
at StK ≈ 2 and one occurring at StK ≈ 30. At the same
time, the curve of τpart/ρf U 2

0 (hollow triangles) shows a
single local minimum at StK ≈ 8. As StK decreases towards
zero, the particle stress continues to increase for reasons
discussed above. As argued elsewhere [5,6], the minimum
of τturb/τturb,un at StK ≈ 2 and the minimum in τpart/ρf U 2

0
at StK ≈ 8 correspond to particle time scales which match
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FIG. 4. Normalized particle stress τpart/ρf U 2
0 as a function of

z/H . Shown are profiles for Stokes numbers corresponding to each
point in Fig. 3. The Stokes number increases from StK ≈ 0.1 to
StK ≈ 100 as the color transitions from black to red (from left towards
right; dark to light shade).

those of near-wall vortical motions (sweeps or ejections) and
large-scale Couette structures, respectively.

While Fig. 3 illustrates the strong dependence of both τpart

and τturb on particle Stokes number and suggests distinct StK
ranges associated with various flow structures, it only provides
a partial picture in terms of the overall influence of StK on
cross-channel momentum transfer. To complete this picture,
Fig. 4 plots the normalized particle stress τpart/ρf U 2

0 versus
z/H for all Stokes numbers shown in Fig. 3. While the behavior
shown by the hollow symbols of Fig. 3 is observed along the
centerline, the peak particle stress also undergoes a strong
transition with varying Stokes number: at very high or very
low values of StK , the peaks of τpart located at z/H ≈ 0.1
and 0.9 become much less pronounced and even disappear. So
while particles interact with turbulent motions and exchange
momentum (thus altering the magnitude of τpart), another
process alters the shape of the profile at the same time.

Occurring simultaneously with preferential accumulation
on scales associated with these flow structures is turbophoresis,
where particles collect near the walls due to wall-normal
gradients in carrier phase velocity fluctuations. Figure 5
demonstrates this effect through the mass concentration
profiles for the same four cases shown in Fig. 2, normalized by
the homogeneous bulk concentration C0. Figure 5 shows that
very low (StK ≈ 0.1) and high (StK ≈ 100) particles maintain
a more uniform concentration profile across the domain, and
are subject to a lesser degree of turbophoresis than intermediate
Stokes numbers. For this flow, StK ≈ 10 particles experience
the largest concentration deficit in the channel center, fol-
lowed by StK ≈ 1 particles. In turn, the more homogeneous
concentration profiles of Fig. 5 correspond to more uniform
profiles of τpart across the channel in Figs. 2 and 4. Note that
near-wall mass concentrations, particularly for StK = O(1)
and StK = O(10), become large and may possibly violate the
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FIG. 5. Normalized mass concentration C/C0 as a function of
z/H . Cases shown are StK ≈ 0.1 (orange); StK ≈ 1.0 (red); StK ≈ 10
(blue); StK ≈ 100 (green).

assumption of negligible particle collisions, although these
regions are quite small (within the viscous sublayer).

Based on Figs. 2–5 we therefore define four distinct StK
regimes: (1) StK < 1, where low-inertia particles increase the
total stress magnitude by increasing the effective density of
the fluid and where particles do not accumulate strongly;
(2) StK = O(1), which represents a peak in preferential
concentration and a corresponding maximum reduction of
turbulent stress; (3) StK = O(10), where particles are too large
to collect in small-scale regions near the wall but instead
collect in regions associated with the Couette rollers; and
(4) StK > 50, where particles display no strong preferential

concentration or turbophoresis. It is these regimes which will
form the basis of the following analysis, and as previously
stated we are interested primarily in the inertial regimes 2–4.

B. Bidisperse simulations

Focusing on StK � 1, three simulations are performed
which consist of blends of each unique combination in the set
StK ≈ [1,10,100], where the total mass fraction φm = 0.25
is split evenly between particles of each StK . In addition to
these three cases, monodisperse simulations at mass fractions
of φm = 0.125 (i.e., half the original) for StK ≈ [1,10,100] are
also used to compare the total particle stress resulting from the
binary blend versus adding the monodisperse particle stresses
together. Figures 6(a)–6(c) show the total bidisperse particle
stress (thick solid line), as well as the portion coming from each
StK (thick dashed and dotted lines), computed by evaluating
τpart = 〈C〉〈u′

pw′
p〉c separately for each particle type. The total

bidisperse particle stress is then compared to the individual
monodisperse stresses (thin dashed and dotted lines) as well
as their sum (thin solid line).

Figure 6 demonstrates that the particle stresses are nearly
independent and additive, which is entirely consistent with the
dilute (i.e., noninteracting) limit assumed for this study. The
total particle stress of the blend nearly exactly matches the
stress when summing the monodisperse simulations at half
the total mass loading. This close match is best for the StK =
[10,100] blend [Fig. 6(c)], and worst for the StK = [1,10]
blend [Fig. 6(a)], particularly in the regions where τpart is
maximum. For cases which contain StK ≈ 1 particles, the
stress associated with these particles contributes more than
half of the total, which is to be expected based on Fig. 2.

For our current purposes, the meaning of this behavior is
that the particles do indeed behave nearly independently, in that
particles of one StK do not modify the flow in such a way that

FIG. 6. Particle stress profiles τpart/ρf U 2
0 (solid lines) as a function of z/H for three different bidisperse blends: (a) StK ≈ 1 (dashed)

and StK ≈ 10 (dotted), (b) StK ≈ 1 (dashed) and StK ≈ 100 (dotted), and (c) StK ≈ 10 (dashed) and StK ≈ 100 (dotted). Thick lines denote
individual and total particle stress from the bidisperse blends, thin lines denote individual and summed monodisperse particle stresses for the
same StK .
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FIG. 7. Normalized particle stress τpart/ρf U 2
0 as a function of z/H for three continuous polydisperse mixtures (thick black lines): (a)

[Stmin,Stmax] = [1,100]; (b) [Stmin,Stmax] = [1,10]; and (c) [Stmin,Stmax] = [10,100]. In each figure, the particle stress from each of the original
monodisperse simulations at StK ≈ [1,10,100] (thin colored lines with symbols) as well as the total particle stress from each of the bidisperse
simulations (thin broken black lines) are included as well—see legend in panel (a).

alters the two-way coupling of particles with a different StK .
This is consistent with the picture outlined in Sec. III A, where
particles of disparate StK interact with distinct features of the
flow, e.g., StK = O(1) particles collect in and interact with
near-wall streaks while StK = O(10) particles instead collect
in regions associated with large-scale Couette structures.
Thus a physical interpretation could be that the weakening
of ejection motions due to StK = O(1) particles [6] is not
expected to modify the turbulence modulation induced by
larger or smaller particles, although tests (not shown here)
confirm that this linearity continues to be present in bidisperse
simulations even when the Stokes number is of the same order.

C. Polydisperse simulations

Based on the confirmation in Sec. III B that blends of par-
ticles with disparate StK behave nearly independently, a final
set of simulations is performed with the goal of characterizing
the particle stresses which develop in continuous polydisperse
mixtures at the same mass fraction of φm = 0.25.

Each particle in the simulation is randomly chosen from
a power-law distribution which is defined by a minimum and
maximum StK :

f (StK ) = α

StK
, (5)

where α is given by

α = 1

ln
( Stmin

Stmax

) , (6)

which is related to the mean of the distribution:

StK = α(Stmax − Stmin). (7)

Stmin and Stmax refer to the prescribed maximum and minimum
StK over which the distribution is defined, and the overbar

refers to the mean of the distribution. Since the particle Stokes
number is proportional to the particle mass (when the diameter
is held constant, which is the case in the present simulations),
the distribution given by Eq. (5) ensures that particles from
each StK contribute equally to the overall mass fraction. Thus
since small StK particles each have less mass, more of them
are included to make their mass contribution equal to those of
larger StK .

Still focusing on StK � 1, three continuous polydisperse
mixtures are tested: (1) [Stmin,Stmax] = [1,100] where
StK = 22; (2) [Stmin,Stmax] = [1,10] where StK = 3.9, and
(3) [Stmin,Stmax] = [10,100] where StK = 39. For each of
these continuous blends, Fig. 7 shows the particle stress τpart

as a function of z/H . Plotted with thin lines are the original
monodisperse cases at StK ≈ 1, StK ≈ 10, and StK ≈ 100
and plotted with broken lines are the bidisperse cases from
Sec. III B.

Figure 7 illustrates several features of the particle stress
under a polydisperse loading. It is clear that particles with
StK = O(1), despite having a maximum ability to reduce the
turbulent stress in the monodisperse systems, do not carry
a strong influence when included as part of a continuous
mixture. In Fig. 7(a), where the Stokes number ranges 1–100,
the magnitude of the particle stress does not approach the
stress of either the monodisperse or bidisperse mixtures which
contain StK ≈ 1 particles, indicating that their influence is
overwhelmed by the presence of larger particles. Similarly
in Fig. 7(b), the total mixture particle stress for a Stokes
number range 1–10 is nearly equal to the particle stress for
StK ≈ 10 particles from the monodisperse case, indicating
again that StK = O(1) particles do not play a significant role
in these mixtures. This is entirely consistent with Fig. 3, which
shows a very rapid decrease in particle stress with Stokes
number in the range 1 < StK < 10. Figure 7(c) shows that
the mixture ranging between Stokes numbers of 10 and 100
is well represented by the binary mixture of StK ≈ 10 and
StK ≈ 100.

013111-5



RICHTER, GARCIA, AND ASTEPHEN PHYSICAL REVIEW E 93, 013111 (2016)

Since the StK = O(1) particles play such a small role in the
overall particle stress of the polydisperse blends, and based on
the fact that the bidisperse particle stress exhibited a linear
behavior—i.e., the total particle stress of the binary mixture
was nearly equal to the sum of the stresses of monodisperse
systems at corresponding mass loadings—we compute for
the [Stmin,Stmax] = [1,100] case an effective particle Stokes
number with the goal of determining whether or not this is an
adequate method of representing the entire mixture stress.

As noted above, in polydisperse systems the particle stress
can be computed by

τpart = 〈C〉〈u′
pw′

p〉c, (8)

where C is the mass concentration and the average 〈·〉c is a
mass-weighted average over the dispersed phase. If instead the
particles were monodisperse, a number-weighted mean could
be used:

τpart = mp〈np〉〈u′
pw′

p〉n, (9)

where mp is the particle mass (equal for all particles),
np is the number concentration, and 〈·〉n is the number-
weighted concentration over the dispersed phase. Thus for
the polydisperse case an effective particle mass mp,eff can be
computed at all heights z/H by assuming that all particles
have the same mass:

mp,eff = 〈C〉〈u′
pw′

p〉c
〈np〉〈u′

pw′
p〉n . (10)

Figure 8 shows the profile of Steff, the Stokes number
corresponding to mp,eff, as a function of z/H . This is compared
to both the vertical mean of this profile 〈Steff〉z (dash-dotted
line) as well as the mean of the distribution StK (dashed line).
For modeling purposes, it would be convenient if the profile of
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H

FIG. 8. Solid line: Effective Stokes number Steff computed from
the effective mass of Eq. (10) for the polydisperse case [Stmin,Stmax] =
[1,100] as a function of z/H . Dotted line: The mean of the distribution
StK , given by Eq. (7). Dash-dotted line: Vertical average of the Steff.

Steff were uniform, which would suggest that the particle stress
which develops in the system can be represented by particles of
a single inertia. Figure 8 shows that indeed, the effective Stokes
number deviates only within the range 15 < Steff < 23, which
is quite narrow compared to the range of the entire mixture.
It is also observed that the vertically averaged value of this
profile is within roughly 5% of the mean of the distribution
StK , which would perhaps encourage one to merely use the
distribution mean as a monodisperse value of StK which
could represent the particle stress for the whole polydisperse
mixture.

To test this, Fig. 9 shows the stress components of the
polydisperse case (blue) compared to the unladen case (black).
Shown also are two monodisperse cases: one where the Stokes
number is set to 〈Steff〉z = 19 (red) and one where the Stokes
number is set to StK = 22 (green). While all particle-laden
cases show a reduction of the turbulent stress τturb nearly
exactly canceled by a corresponding particle stress τpart (line
styles are the same as in Fig. 2), the monodisperse cases
attempting to represent the polydisperse mixture overestimate
the particle stress and the reduction in τturb, indicating that
despite the narrow width of Steff displayed in Fig. 8, it is
somewhat inadequate at representing the mixture with a single
effective particle inertia. The degree of error is commensurate
with the degree of variability of Steff shown in Fig. 8.

The failure of representing the mixture with a single
particle is perhaps unsurprising given the complex relationship
between τpart and StK , but based on the discussion surrounding
Figs. 3–5, we suggest that to represent the particle stress in
the polydisperse system, one must at a minimum represent
particles from each of the four Stokes number regimes
outlined previously. That is, given the varying importance of
turbophoresis and preferential accumulation across different
StK , a single particle type will not be sufficient to act effectively
as a mixture even given the results of Fig. 8. If a mixture
contains some particles which can collect at the walls (e.g.,
StK ≈ 10) in addition to others that remain evenly distributed
throughout the domain (e.g., StK ≈ 100), these two distinct
behaviors must be represented in any attempt to model the
blend.

To this end, we perform one final simulation where, based
on Figs. 3–5 and the previous outline of distinct StK regimes,
we define the following Stokes number ranges along with a
single StK to represent each range: 1 < StK < 2 represented
by StK = 1; 2 < StK < 50 represented by StK = 10; and
St > 50 represented by StK = 100. Then, based on the mixture
[Stmin,Stmax] = [1,100] currently under discussion, the mass
fraction included from each of these ranges is chosen propor-
tionally based on its fraction of the range 1 < StK < 100. For
this specific case, this leads to 1% of the total mass fraction
represented by StK = 1 particles, 48.5% represented by StK =
10 particles, and 50.5% represented by StK = 100 particles.
It is interesting to note that despite its small percentage
contribution in this model, the effect of the StK = 1 particles,
due to their optimal turbulent flux modification (cf. Fig. 3),
is relatively small yet not insignificant compared to StK = 10
and StK = 100 particles when considering the wide range of
StK in this particular mixture.

The stress components for this test model are included in
Fig. 9 as orange lines, and are seen to very closely approximate
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FIG. 9. (a) Turbulent stress τturb and (b) particle stress τpart as a function of height for the polydisperse case [Stmin,Stmax] = [1,100], where
the color and line style is given in the legend: the full polydisperse mixture (blue, dash-dot-dot); a monodisperse system with the Stokes number
set to the distribution mean StK (green, dotted); a monodisperse system with the Stokes number set to the vertically averaged effective Stokes
number 〈Steff〉z (red, dashed); and a model case with representation from each of the Stokes number regimes (orange, dash-dot). Also shown
for comparison is the unladen case (black, solid). All stress components normalized by ρf U 2

0 .

the polydisperse stress components. While not shown here for
brevity, the same is true for the other polydisperse cases consid-
ered in Fig. 7. We thus conclude that, as a minimum, each of the
distinct Stokes number regimes outlined in Sec. III A must be
represented in an attempt to mimic the particle stresses which
develop in the polydisperse case. Admittedly, the specific
boundaries of these regimes were chosen somewhat arbitrarily,
but reflect the Stokes number sensitivity represented in Fig. 3.
For instance the range represented by StK ≈ 1 particles is quite
narrow, while the behavior associated with StK ≈ 10 particles
is quite broad.

IV. CONCLUSIONS

In this study we have performed simulations of two-way
coupled turbulent planar Couette flow, with the intent of
understanding and representing the momentum carried by
polydisperse particle mixtures at friction Reynolds numbers
of Reτ ≈ 120. The study is broken up into three sequential
segments, each with its own specific findings:

(1) First, monodisperse simulations were carried out in the
range 0.1 < StK < 100 and the changes in the particle stress
τpart were used to define four Stokes number regimes: (i) StK <

1, where low-inertia particles only weakly preferentially
accumulate and whose particle stress effectively adds to the
density of the carrier phase; (ii) StK = O(1), where particles
can efficiently preferentially concentrate and in this way
result in a maximum reduction of the carrier phase turbulent
stress; (iii) 2 � StK � 50, where particles accumulate in
regions associated with the large-scale Couette structures in
addition to turbophoresis; and (iv) StK � 50, where parti-
cles are too inertial to exhibit preferential concentration or
turbophoresis.

(2) Systems of bidisperse blends of particles taken by each
combination in the set StK ≈ [1,10,100], where half of the
total dispersed phase mass fraction is represented by each StK ,

were used to demonstrate the nearly additive property of the
particle stress. The total stress in bidisperse systems is nearly
exactly equal to the sum of the monodisperse cases at the
corresponding mass fraction and Stokes numbers.

(3) Polydisperse blends of particles, where each particle
StK is drawn from a power-law distribution defined over
a prescribed Stokes number range, were computed. It was
shown that a single effective particle Stokes number is not
necessarily sufficient for representing the particle stress and
corresponding reduction in turbulent stress, and that mass-
proportional representation from each of the Stokes number
regimes identified with the monodisperse computations pro-
vides an accurate model for the continuously polydisperse
blend.

The present simulations are meant to demonstrate ways in
which dilute systems of polydisperse particles, which occur
very frequently in natural and industrial environments, can be
represented by a simplified description of the dispersed phase.
In this sense it is the ultimate goal of our ongoing work to
use these findings in order to develop effective models which
minimize the need for explicitly representing all particle sizes
in a polydisperse mixture. A first attempt at such a model
could include parametrizing the particle stress as a function
of Stokes number (i.e., particle size) and integrating over all
particles available in a given mixture, however as shown by
the significant height dependence in Fig. 4, such a technique
would be specific to the idealized geometry used here and
would be thus limited in its universality. It is likely that
models would instead need to be built based on more general
mechanistic findings revealed by this study: for instance the
presence of StK � 1 particles may possibly be modeled solely
through a modified fluid density while StK � 1 particles
can be modeled from a stochastic point of view (see, e.g.,
Février et al. [13]), leaving only particles which preferentially
accumulate to be explicitly represented in a simulation. Finally
the addition of particle-particle collisions in less dilute systems
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will likely significantly modify the present findings, since
particles with disparate StK can directly interact (as opposed
to only interacting indirectly through modifications to the sur-
rounding flow), and remains an interesting point of continuing
research.
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